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synopsis 
An idealized model for flexible foam in tension is developed. The model includes large 

deformations and cell structure orientation before and after deformation. It is pre- 
dicted that two quantities affect the initial modulus of an unoriented foam: the density 
and a cell structure parameter. Data for latex foam show that the model correctly pre- 
dicts the initial tensile modulus. The model also predicts that cell structure orientation 
is a reasonable method for achieving a desired modulus without altering the density. 

INTRODUCTION 

Flexible foams are used primarily for cushioning. There are several rea- 
sons for studying their mechanical properties in tension. First, it is com- 
monly accepted that the small strain modulus in tension and compression 
are although there is no paper devoted to this subject. Rusch2 
claims that the tensile modulus is one of the four phenomenological param- 
eters that may be used to describe a foam’s compression response. Another 
justification is that a cushion which is compressed in one direction will be in 
tension in another due to the nonuniform character of the loading. An in- 
dentor which locally compresses a cushion causes a significant tensile strain 
along its top at  the edges of the indentor. The net indenting force is a func- 
tion of the compression and tension properties of the foam. 

Models for the tensile properties of foam were developed by Gent and 
Thomas8 and Hardir~g.~ These authors treat foam as a structure consisting 
of elastic bars that intersect at  points containing rigid material. They con- 
clude that the tensile modulus is a function of the foam density, solid-phase 
density, and solid-phase modulus and that there is no dependence upon a 
cell structure parameter. This author concludes that a cell structure 
parameter which significantly influences the tensile modulus exists. Fur- 
thermore, it is shown that initial cell structure orientation is another fac- 
tor which controls the modulus. 

DEVELOPMENT OF MODEL 

Any general mathematical model of latex foam should consider these three 
factors : 
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1. Foam consists of large amorphous masses of material which connect 
strands of rubber in circular patterns. The appearance is that of an inter- 
connecting network with the globules at the junction points. 

During elongation, the fibers stretch and orient in the directiou of 
stretching. The globules remain relatively undeformed and thereby in- 
crease the local strain of the fibers. 

2. 

3. Orientation of the structure prior to loading is possible. 

In Gent and Thomas13 the first is considered in predicting the small strain 
modulus. However, the analysis is limited to small strains and cannot be 
extended to finite strain phenomena such as tearing or to oriented foams. 
The presently proposed model consists of fibers of any assumed orientation 
in the unstrained state. The fibers have the properties of the rubber phase 
of the foam. Their ends connect into rigid spheres, or “dead volumes.” 
For simplicity, we assume that each fiber has an average size specified by a 
length 1 and an area a and that a fixed number of fibers n connect to each 
sphere of diameter D. 

Now consider an elemental plan of area dA and unit normal p at a point 
within the foam, as depicted in Figure 1. We want to consider the traction 
exerted on the material on one side of d A  by the material on the other. Let 
s be a unit vector of arbitrary direction. Associate with s a solid angle ele- 
ment dw defined by a complete rotation of the vector s + ds about s. Next 
we introduce a direction distribution function p for the bar elements, so that 
the integral of p over all spatial directions, i.e., over a solid angle 27r, is 
unity. Then Kpdw denotes the number f bars per unit volume having di- 

directions bounded by dw is given by 
rections bounded by dw. The number o P bars (NB)  crossing d A  and having 

N g  = KplS,,dAdw (1) 

h \1 

> 

Fig. 1. Differential volume of material of arbitrary size. 
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where 1 is a length in the direction of s which together m6th dA bounds a 
cylindrical volume above which no new elements contribute to the sum in 
eq. (1) and below which elements are neglected in arriving at  this sum. 
By intuition, 1 is comparable to the avemge length of an element and is 
chosen as such. 

Y 

Spherical 
dead volume 

\ 

Fig. 2. Deformation of a single bar element. Deformation is such that element con- 
sisting of bar and “dead volume” deforms according to the global deformation of the 
specimen, namely, in a uniaxial tension test: z = A&’, y = XY, z - Xo = (b(1 + 8 )  - 
8)X0 /8 ,  and y = YO = 041 + 8 )  - B)Yo/B. 

The effect on the tractive force of a spherical element crossing dA is to 
transmit the stresses from the bars connected to that element. This means 
that the effective number of bars intersecting dA is greater than NB. If n 
bars connect to one sphere and each bar to two spheres, then there are (2/n) K 

spheres per unit volume. If N, is the number of spheres intersecting dA 
having bars in the s direction, then 

N ,  = (2/n)~pDs,dAdo. (2) 

The number of bars within the solid angle do and intersecting spheres on 
dA is 

The total number of bars in the s direction crossing dA is N B  + N B S .  

The force component in the r direction on a fiber in the s direction is 

F, = Fs.r = Fs, 

and the traction in the r direction due to all elements in the s direction fol- 
lows as 

(4) 
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The total traction on dA due to all the elements in all the directions is de- 
termined by integrating eq. (5) over n = 2 r ,  which is the solid angle cover- 
ing these directions, that is to say, 

T,” = K W  + a> s,, fS,lqPdW (6) 

where /3 = D/1, and f = F/a is the tensile stress in a bar element. 
The fiber stress f is assumed to be given by the stress in a solid rubber bar 

which is subjected to a stretch ratio X I .  In general, A1 is the stretch ratio in 
the direction given by s and is related to the global, or macroscopic, strain 
through a second-order transformation. For our purposes, we need only 
consider a uniaxial tension test where the global stretch ratios in the axial 
and transverse direction are X and At, respectively. In  Figure 2, a particle 
is shown along with one of the bars associated with that particle. Since 
each bar is connected to two spheres, only half a bar is drawn. Points Po 
and PI are the endpoint positions of the undeformed bar and P is the de- 
formed position of the particle initially at  Pl. It is assumed that this com- 
bined bar and sphere element is subjected to the global stretch ratios X and 
At, that is, 

x = X Z  y=XY. (7) 
Furthermore, by similar triangles, 

From the definition of XI we obtain 

= (Xt(l + a) - p)2 sin%’ + (X(1 + a) - B ) 2  cOs28‘ (9) 

where 8’ is defined in Figure 2. The angle 8 in the deformed material is re- 
lated to 8’ in the undeformed material by 

x - xo 
y - Yo + a> - B tan8’. tan8 = - - - 

X(1 + P )  - B 
Substitution of eq. (10) into eq. (9) yields 

where 

The dead volume increases the local strain and the amount of fiber orien- 
tion in the axial direction. The probability of finding a bar within the con- 
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ical sector bounded by 8 in the deformed body is a measure of the orienta- 
tion. This equals the probability of finding one within the conical sector 
bounded by 8’ in the undeformed body, or 

p(eD 6 e)  = p(e, 6 8’). (13) 

The probability P(OU 6 8’) is given by the direction distribution function 
integrated over the solid angle within the conical sector which is bounded 
by 8’, i.e., 

P(8, < 8’) = J2= f ’  p,(a‘) sina &’d$ = s,” s,” p (a) sina &dy (14) 

where p ,  is the direction distribution function in the undeformed body.s 
Taking the derivative with respect to 8 yields 

0 0  

do’ 
p(8)  sin8 = p,(e’(e)) sine’ - 

d8 

where O’(8) is evaluated using eq. (10). 

measured quantities. 
foam, then 

To complete the derivation we must express KZU in terms of more easily 
If p is the density of solid rubber and pf is that of 

or 

Substituting eqs. (15) and (16) into eq. (6) evaluated in the axial and 
transverse direction yields 

pU(8’) sin38 
d8 = 0 (17b) 

1 - a 2 ~ ~ s 2 e  
ut = 27r P I I c  

1 + 8  
nu . B 7 r D 2  o . 

where 8’ and XI are known functions of 8 given by eqs. (10) and ( l l ) ,  re- 
spectively. 
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Density Ratio pr / P  

Fig. 3. Sphere diameter/bar length vs. density ratio, B vs. pf /p .  

By considering a spherical volume of diameter D + I centered at the 
middle of a dead volume, one obtains 

P , - ( D + Z ) ~ =  3r p 

6 
or 

This equation is plotted in Figure 3 using na/rD2 as a parameter. Since na 
is the total area of the bars connected to a dead volume and 3rD2 is the sur- 
face area of the dead volume, then their ratio, na/3rD2, is a measure of the 
amount of spherical area covered by bar elements. This quantity is af- 
fected by the bubble size as a result of whipping and the latex rheological 
properties during gelling.’ 

Thus, for a given rubber phase stress-strain law, a specified direction dis- 
tribution function of undeformed fibers, a known foam density, and a value 
of na/rD2, chosen as prescribed in the next section, the stress-strain be- 
havior in tension may be calculated from eqs. (17) and (18). In particular, 
the small strain tensile modulus will be calculated for foams of various orien- 
tations. 

YOUNG’S MODULUS AND POISSON’S RATIO 

Unoriented Foam 
Young’s modulus, or the zero strain modulus, is obtained by substituting 

(19) f(h) = E(XI - 1)) x = 1 + c, x: = 1 + B: 
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into eqs. (17) and letting e and et be small. For this example, an initially 
unoriented foam is considered in which case p ,  = 1/27r. Equations (17) 
then reduce to 

where E f  is the foam modulus, v f  is Poisson’s ratio, and E is the modulus for 
the rubber. 

Data were obtained for two different foam compounds to check against 
the values of Young’s modulus and Poisson’s ratio as predicted by eqs. (20). 
Both compounds were foamed by mechanical beating and gelled by sodium 
silicofluoride.6 The Appendix contains the foam formulations. The re- 
sults for the first compound are due to Gent and Thomasa and for the sec- 
ond, by the author. 

TABLE I 
Poisson’s Fbtio for Various Density Foams 

Density, (lb/in.3) X 100 VI 

0.707 0.18 
0.396 0.25 
0.67 0.15 
0.381 0.15 
0.418 0.34 
0.463 0.34 
0.458 0.23 
0.530 0.23 
0.627 0.23 
0.727 0.20 
0.749 0.20 
0.661 0.28 

Fj = 0.23 
- 

Table I presents data for Poisson’s ratio for 12 samples prepared by the 
author. There is a wide dispersion of values, however, their mean is 0.23, 
which is within 10% of predicted. This is not a validation of the theory. 
It is only used to justify letting Y f  = 0.25 in eq. (20) which becomes 

El 1 3  O2 TUX - 
E 61+p7rD2 

With a specified density ratio, pf/p,  and a value of na/7rD2, /3 can be ob- 
tained from eq. (18) or Figure 3. This in turn can be used to evaluate eq. 
(21). This procedure was followed, and the result is plotted against den- 
sity ratio in Figure 4 for na/7rD2 = 0.5 and 1 and in Figure 5 for na/?rD2 = 
0.15 and 1. The theory of Gent and Thomas3 corresponds to na/uD2 = 1. 
The curve for na/7rD2 = 0.5 fits Gent and Thomas’s data better, and na/ 
lrD2 = 0.15 fits this author’s data better. The fact that one value of 
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na/rD2 applies for each group of foaa samples indicates that this quantity 
is directly related to processing variables, such zw frothing technique and 
surface properties of the uncured compound. Both of these were held con- 
stant for the experiment. Thus, once na/rD2 is determined for a few sam- 
ples, the same value can be used for all subsequent ones prepared by the 
same process. 

0 . I  .2 .3 4 .5 

Density Ratio - p rip 

Fig. 4. Modulus vs. density. Data derived by Gent and Thomas8 for natural rubber 
latex foam. 
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Fig. 5. Modulus vs. density. Data for SBR 2105 latex foam showing predicted and 
actual foam modulus. 

Figure 6 shows the effect of varying na/rD2. The modulus is relatively 
insensitive to structural changes in the region of na/rD2 = 0.5. This is 
the case for all densities since the curve passes through a maximum, 
independent of density, at this point. We show this by setting the differ- 
ential of eq. (21) to zero while holding p f  constant, i.e., the differential of p I  
is zero. Mathematically, 



TENSILE PROPERTIES OF FLEXIBLE FOAMS 701 

Solving this homogeneous system yields the desired result, namely, na/lrD2 
= 0.5 for optimum foam modulus at a specified density. The flatness of 
the curve at  the maximum is fortuitous since it allows for processing varia- 
tions without much loss in modulus. 

Bor Cross SectionISphere Area 
no 
T 02 
- 

Fig. 6. Foam modulus plotted as a function of structure for a constant density. 

Oriented Foam 
There are two limiting cases in an oriented foam : (a) complete alignment 

of the bars with the loading direction and (b) complete alignment normal to 
the loading direction. In  the first case, 

Upon substitution into eq. (17a) and after assuming small strains, one 
obtains the modulus, that is to say 

3p2 na 
E 1 + B lrD2 
EL- - -. @4) 

This is six times the value for an unorierited material. The second case 
yields the physically meaningless result that the initial modulus is zero. 



702 LEDERMAN 

An intermediate possibility of industrial interest is a partially oriented 
foam. Such a condition could result from mold effects or from a purposeful 
orientation during gelling. An exact knowledge of the direction distribu- 
tion function cannot normally be known. To show the effects, we assume 
a function of the form 

2 
1r= 

pa(@’) = - sin8’. (‘25) 

This function describes a foam with more bars orierited in the transverse 
than in the axial direction. Substituting this distribution into eqs. (17) 
yields 

1 
(26) 

1 3/32 na E!=--- V f  = - E 101  +p?rD2  5 

which is 0.6 times the unoriented foam modulus. 
The conaequences of this softening extends to compression. The tensile 

modulus, it is claimed,2 equals the initial compression modulus of a foam. 
During use, latex foam will compression set, lose height, and soften without 
any visible degradation of the foam’s rubber phase. The orientation of the 
bar elements can explain this phenomenon. As another indication of the 
effect of orientation has been given by ZOCCO,~ who used orientation during 
gelling to alter the compressive stiffness of a polyurethane foam. 

SUMMARY 
A mathematical model for the prediction of the tensile properties of a flex- 

ible foam is derived. The model consists of randomly interspersed bars and 
spheres forming a network of any predetermined orientation. Two param- 
eters are introduced, the ratio of the bar cross section to sphere area and the 
ratio of the bar length to sphere diameter. When the former ratio is unity 
and the foam is unoriented, this model reduces to that of Gent and Thomas.’ 
It was found that this model matches the experimental data better than any 
of the previous ones. 

For unoriented foam, it is predicted that the optimum stiffness is achieved 
when na/uDz = 0.5. The stiffness can also be controlled by orienting the 
bars, e.g., decreased by aligning them normal to the loading direction. 
Data on compression set and softening of latex foam substantiate this result. 
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APPENDIX 
Foam Formulations by Weight 

Component Dry, Phr 
Gent and Thomas* 

NR Latex, 60% 
lOyo Potassium ricinoleate 
5% Cetyl trimethylammoniurii bromide 
20% Potassium chloride 

50% Zinc oxide paste 
50% Zinc diethyl dithiocarbamate 
50% Zinc ZmercapLptobenzothiazole 
50% sym-Di-pnaphthyl-p-phenylene dianhe 
25% Sodium silicofluoride 

SBR 2105 latex 
200/, Potassium oleate 
62% Sulfur paste 
55% Zinc oxide paste 
50y0 Ethazate (zinc diethyl dithiocarbamate) 
Trimene Basen (reaction product of ethyl chloride, 

OXAF (zinc salt of Zmercaptobenzothiazole) 
14% Ammonium hydroxide 
Talc 
Antioxidant 
Sodium silicofluoride 

50% sulfur paste 

Author's Foam 

formaldehyde, and ammonia) 

100 
7 
3 
2.5 
2.5 
3 
1 
0.3 
0.5 

1-1.5 

100 
1.5 
3 
6 
0.75 

0.75 
1.5 
4 (wet) 
40 
1 (wet) 
3 

a Uniroyal, Inc., trademark. 
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